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ABSTRACT
In an inverse problem of any kind, poor conditioning of the inverse operator decreases the numerical

stability of any unregularized solution in the presence of data noise. In this paper we show that the
numerical stability of the di†erential emission measure (DEM) inverse problem can be considerably
improved by judicious choice of the integral operator. SpeciÐcally, we formulate a combinatorial opti-
mization problem where, in a preconditioning step, a subset of spectral lines is selected in such a way as
to minimize explicitly the condition number of the discretized integral operator. We tackle this large
combinatorial optimization problem using a genetic algorithm. We apply this preconditioning technique
to a synthetic data set comprising of solar UV/EUV emission lines in the SOHO SUMER/CDS wave-
length range. Following which we test the same hypothesis on lines observed by the Harvard S-055 EUV
spectroheliometer. On performing the inversion we see that the temperature distribution in the emitting
region of the solar atmosphere is recovered with considerably better stability and smaller error bars
when our preconditioning technique is used, in both synthetic and ““ real ÏÏ cases, even though this
involves the analysis of fewer spectral lines than in the ““ All-lines ÏÏ approach. The preconditioning step
leads to regularized inversions that compare favorably to inversions by singular value decomposition,
while providing greater Ñexibility in the incorporation of physically and/or observationally based con-
straints in the line selection process.
Subject headings : methods : analytical È methods : numerical È Sun: atmosphere È Sun: UV radiation

1. INTRODUCTION

The launch of the Solar and Heliospheric Observatory
(SOHO) in 1995 saw the largest complement of solar observ-
ing tools since the Skylab era. One of SOHOÏs prime scienti-
Ðc goals is to understand the structure and dynamics of
the SunÏs chromospheric, transition region and coronal
plasmas (Fleck, Domingo, & Poland 1995). This involves,
in part, the study of the SunÏs UV/EUV emission ; this
responsibility is principally undertaken by the Coronal
Diagnostic Spectrometer (CDS; Harrison et al. 1995) and
the Solar Ultraviolet Measurement of Emitted Radiation
(SUMER; Wilhelm et al. 1995) instruments.

The characterization of the SunÏs optically thin UV/EUV
emission in terms of distributions of electron density, n

e
,

and electron temperature, depends on the determinationT
e
,

of the emission measure functions, di†erential (DEM) or
otherwise, of the atmosphere (Pottasch 1964 ; Withbroe
1970, 1975 ; Jordan & Wilson 1971 ; Munro, Dupree, &
Withbroe 1971 ; Dere & Mason 1981 ; Raymond & Doyle
1981b ; Doscheck 1987 ; Mason & Monsignori-Fossi 1994).
These measures can, with additional physical assumptions,
yield important information about the nature of the energy
and momentum balance mechanisms of di†erent com-
ponents of the solar plasma. Only with reliable estimates, or
diagnostics, can we possibly hope to carry out sound
empirical investigations of the physical processes under-
lying coronal heating and/or solar wind acceleration.

1 Also with the Advanced Study Program of the National Center for
Atmospheric Research.

2 The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

Mathematically, the inverse problem takes theDEM(T
e
)

form of a Fredholm integral equation of the Ðrst kind, i.e.,
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where is the line intensity of an emission line labeled l,I
lis the line emissivity, and is the di†erential emis-K

l
(T

e
) m(T

e
)

sion measure (DEM) in electron temperature. This quantity,
the source function we seek to infer from the measured line
intensities, is deÐned by Craig & Brown (1976) as
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where is a surface of constant in the emitting volumeS
Te

T
eof plasma and the integral over all such surfaces is its

general form, describing the nonisothermal plasma.
is basically a mean-square temperature gradient-DEM(T

e
)

weighted electron density but physically represents the dis-
tribution of through the various temperature regionsn

e
2

along the line of sight. If the assumed/imposed atmospheric
model is plane-parallel in nature, the complicated form of
equation (2) reduces to the commonly used form of DEM
[i.e., for scale height h ; see discussion inm(T

e
) \ n

e
2 dh/dT

eBrown et al. 1991], although both, if treated correctly,
should yield functions with the same characteristic shape.

The derivation of the above characteristic plasma dis-
tributions from remotely sensed data (i.e., essentially emis-
sion line intensities) represents an ill-posed inverse problem.
The problem is ill-posed in the classical sense, in that many
di†erent DEMs can be inferred from the same observational
data, i.e., there is a distinct nonuniqueness in any calcu-
lation (see, e.g., Craig & Brown 1976, 1986 ; Parker 1994,
Chap. 2). In many ways this difficulty continues to pose a
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signiÐcant hurdle and has been discussed extensively in the
recent literature (see, e.g., Thompson 1991 ; Judge et al.
1995 ; Kashyap & Drake 1998). However, if we adopt the
view of Craig & Brown (1976) that the di†erential emission
measure is the only meaningful quantity that can be inferred
from frequency integrated UV/EUV line intensities, we
must also address numerical problems associated with the
numerical inverse problem, i.e., the numerical counterpart
of ill-posedness known as poor conditioning.

In this paper we consider the problem of obtaining a
small set of UV/EUV lines (predominantly belonging to the
150È1610 wavelength range of the CDS/SUMERA�
instruments) such that the unavoidable poor conditioning
of any numerical inversion is at least minimized. In order to
achieve this optimizational goal we make use of a genetic
algorithm to search through the possible subsets of lines to
Ðnd those that lead to the least deleterious numerical condi-
tioning of the discretized integral operator.

In ° 2 we introduce the reader to some fundamental
mathematical and physical tools, and provide an overview
of the GA used in this analysis. An in-depth discussion of
GA-related matters will be the subject of a future paper
(McIntosh & Charbonneau 2000). We do provide a basic
overview of the SELECTOR GA in ° 2.5 and discuss in
some detail some relevant run-time characteristics of a
typical SELECTOR run.

In ° 3, we show that when an optimal set lines are chosen
by SELECTOR and are used to perform a inver-DEM(T

e
)

sion on some synthetic test data, the e†ect of any data
errors propagating through to the solution are dramatically
reduced, as compared to solutions obtained using all of the
physically tractable lines available in the spectrum (the con-
ventional approach3). To this end we make use of the same
set of 133 lines used in the test calculations of Judge,
Hubeny, & Brown (1997).

Finally, to go beyond a mere ““ proof of concept ÏÏ for the
usefulness of this GA-based technique, we turn our atten-
tion to extracting an optimal subset of observed lines from
those in the wavelength range 280È1350 of the HarvardA�
S-055 EUV Spectroheliometer (Reeves, Huber, & Timothy
1977). In ° 4 we give the results of SELECTOR operating on
the 40 strong lines available for this analysis (Ðrst order and
lines signiÐcantly clear from blending e†ects) to obtain an
optimal subset of 30 that increases the stability of any fol-
lowing numerical inversion. In addition, we make use of the
average solar data tabulated by Vernazza & Reeves (1978),
which provide an excellent test bed for inversions using
optimal line subsets. We compare our results, for both
optimal and full line sets, to those previously published in
the literature, principally with Raymond & Doyle (1981b,
hereafter RD1981b), but comparison may easily be made
with Noyes et al. (1985) and Doyle et al. (1985).

2. PHYSICAL AND MATHEMATICAL BACKGROUND

2.1. Modeling L ine Emission Coefficients
The foregoing discussion of optically thin line emission at

or near coronal ionization equilibrium in a highly non-LTE
plasma relies on the following assumptions (see, e.g., Mason
& Monsignori-Fossi 1994) :

3 What we refer to here as the ““ conventional method ÏÏ consists of sub-
jectively choosing emission lines for study primarily on their physical
attributes and not necessarily on any mathematical basis. This in no way
means that all of the lines observed are ultimately used in any inverse
calculations ; only the ““ good ÏÏ lines are used.

1. The plasma is optically thin.
2. Atomic hydrogen, the major constituent, is fully

ionized.
3. The electron velocity distribution is Maxwellian in

nature.
4. The abundances of the elements in the plasma are

constant.
5. Photoexcitation and stimulated emission can be

neglected.

An analysis of the solar plasma carried out under these
assumptions becomes similar to that of Pottasch (1964).
Further, the total integrated line intensity of a line,(I

l
)

labeled l, is given by a double integral over and as Ðrstn
e

T
edescribed by Je†eries, Orrall, & Zirker (1972a, 1972b),

which takes the form

I
l
\
P
ne

P
Te

hl
l
A

l
4n

n
u(l)

nion n
e

nion
n
el

n
el

nH

nH
n
e

] k(n
e
, T

e
)dn

e
dT

e
ergs cm~2 sr~1 s~1 . (3)

Here is the Einstein A-coefficient,A
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eof the upper atomic level of the line, the ionic abundance,
elemental abundance, and relative abundance of H to elec-
trons (having a value of 0.8 in the solar atmosphere), respec-
tively, and is the bivariate di†erential emissionk(n

e
, T

e
)

measure of Judge et al. [1997 ; deÐned as by Brown((n
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tity measuring the volume distribution of emitting plasma
di†erentially as a function of and within the plasma,n

e
T
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where (assumed to be nonzero) is the local angleh
ne,Tebetween vectors and normal to surfaces of+n

e
+T

e
S
ne
, S

Teconstant electron density and temperature, respectively, and
is the line where the constant surfaces meet. The inter-L

ne,Teested reader is referred to Figure 1 in Brown et al. (1991) for
a perspective of the plasma geometry. Full descriptions of
the other quantities in equation (3) can be found in Jordan
(1969), Jacobs et al. (1977, 1980), and Arnaud & RothenÑug
(1985).

At this point we choose to deÐne the line emission coeffi-
cient (normalized to hereafter simply referredK

l
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e
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) n
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to as the emissivity, as
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(5)

As discussed in Judge et al. (1997), the bivariate form of
equation (3) is not easy to invert in a reliable manner. To
make the most of this relationship it is often convenient to
reduce it to an integral over a single variable by taking a
moment of with respect to (see, e.g., McIntosh,k(n

e
, T

e
) n

eBrown, & Judge 1998a), i.e.,
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noting that this equation is equivalent to the deÐnition pre-
sented in equation (2). It is then straightforward to reduce
equation (3) to a univariate form (integrating out the n

edependence in the equation, cf. eq. [6] and assuming that
we are operating in some Ðxed regime) :n

e
\ n0

I
l
\
P
Te

K
l
(T

e
)m(T

e
)dT

e
. (7)

In formally solving equation (7) in °° 3 and 4, we carry out
the integration in terms of a logarithmic variable t

e
\

in order to facilitate the comparison of recoveredlog10 T
e
,

DEMs to those published previously. This substitution
leaves the structure of the governing equation una†ected :
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e
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where is the DEM of (units of cm~5). Oncem(t
e
) log10 T

eformed, univariate integrals, such as equation (7) or (8),
contain all of the available information about the emitting
optically thin plasma (Craig & Brown 1976) in terms of the

DEM function, given that the assumptions madeT
e

m(T
e
)

earlier are true. One can also take a moment of k(n
e
, T

e
)

with respect to to yield an electron density DEM(see, e.g.,T
eMcIntosh et al. 1998a or McIntosh 1998). In what follows

we restrict ourselves to equation (8). Note that because the
plasma is assumed to be optically thin, the integral over the
line of sight has been totally ““ absorbed ÏÏ in the integral over

on the basis of the two parcels of emitting plasma att
e
; I

l
Ïs,

di†erent temperatures located at di†erent locations along
the line of sight cannot be distinguished from a single parcel
of plasma containing two thermal components within the
spatial resolution element characterizing the spectroscopic
observation.

2.2. T he Condition Number
We have previously observed that equation (8) takes the

form of a Fredholm integral equation of the Ðrst kind for
the di†erential emission measure in temperature. The solu-
tion of equation (8) will only reliably prescribe the form of

at one temperature point. Thus, to obtain a solutionm(t
e
)

spanning our entire domain we are required to maket
euse of N [ 1 other lines such that we form a linear

matrix system prescribing the discretized form of m(t
e
),

. . . , at P¹ N points (Craig & Brownf \ [m(t
e1

), m(t
eP

)],
1986). In doing this, we have constructed a (N ] P) matrix
equation of the form

g \Kf , (9)

where the data vector . . . , is comprised of lineg \ (I1, I
N
)

intensities and K is known as the kernel matrix and is the
quantity with which determines the conditioning of the
system. Notice that we explicitly assume that the elements
of the kernel matrix are known exactly.

The form of equation (9) is overly simpliÐed because, in
general, there will be errors of signiÐcant magnitude
(º10%) present in the observed line intensities. That is, we
now anticipate a (vector) noise component dg in the data.
This implies that the solution must then be represented by
f \ f @] df. It is easily shown that, for data errors such as
these, we will observe error ampliÐcation through to the
solution of the order (Craig & Brown 1986)

p df p

p f p
¹ pK p pK~1 p

p dg p

p g p
. (10)

where p x p is the quadratic norm of x. Now we can make
use of the result that where is thepK~1 p \ pmax, pmaxmaximum singular value of matrix K (these singular values
are simply the eigenvalues of KTK), and a corollary of this
result to deÐne the condition number ofC

K
(1\C

K
\O)

the kernel matrix as

C
K

\ pK p pK~1 p \ pmax
pmin

, (11)

where, the second equality arises since the singular values of
K~1 are just the reciprocal singular values of K (see Golub
& Van Loan 1989, ° 2.5). Equation (11) indicates that the
distributions of the singular values of K directly determines
the level of error ampliÐcation to be expected in the solu-
tion of equation (9). Equation (11) immediately highlights
the disastrous e†ect of zero (or near-zero) singular values,
because these will dramatically increase and have, inC

Kgeneral, highly oscillatory (usually unphysical) eigen-
function counterparts (see the example on p. 9 of Craig &
Brown 1986). These highly oscillatory functions, when
multiplied by the reciprocal of a small number, dominate
the behavior of any solution m(t

e
).

We therefore seek a regularized solution of equation (9).
Classically this is performed by replacing K~1 by the
appropriate approximate inverse (KTK] "H)~1
(Tichonov 1963 ; Louis 1996) and calculate the regularized
solution for the smoothing parameter " (º0) and some af"priori estimate of the functional form of the solution, e.g., a
smooth nth derivative, represented by the smoothing matrix
H as

f" \ (KTK] "H)~1KTg . (12)

A detailed discussion of regularization is beyond the scope
of this paper ; we simply point out that it negates the e†ects
that small singular values of K have on the solution by
e†ectively replacing them by " (cf. eqs. [10] and [11]). The
interested reader is referred to Tichonov (1963) ; Twomey
(1963) ; Sneddon (1972) ; Craig & Brown (1986) ; Jin & Hou
(1997) for in-depth discussion of particular regularization
techniques. Unless otherwise stated, we perform inversions
here using second-order regularization for a prescribed
value of ".

The condition number is directly proportional to the
degree of linear dependence in the rows of K. This presents
an obvious difficulty for the problem, since using am(t

e
)

large numbers of lines ensures that the ““ coverage ÏÏ of the t
edomain is good, but the likelihood becomes high that some

of these lines will have very similar kernels, leading to a high
degree of linear dependence between some rows of K, and
so to a high value of Conversely, using fewer linesC

K
.

reduces the chance of ending up with nearly linearly depen-
dent rows of K, but increases the likelihood that some
region in the domain will be badly covered and so veryt

epoorly constrained by the data (see also Mariska 1992 ;
Chap. 4). This brings us back to the nonuniqueness
problem, since we are now in a situation where source func-
tions that look very di†erent in the poorly coveredm(t

e
)

region of the domain lead to the same data upon evaluating
the right-hand-side of equation (8). This situation, from the
point of view of the discretized system (eq. [9]), also leads to
a high condition number ! The requirements of low andC

Khigh coverage are in fundamental conÑict.
These problem would obviously vanish if the emissivities

closely resembled d-functions or at least were well localized
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FIG. 1.ÈTerm diagram of N IV for transitions with wavelengths less
than 1600 Indicated are the main lines of the ion including the 765.147A� . A�
resonance line (solid line) and the 1486.496 intersystem line (dot-dashedA�
line). The Ðgure legend gives the nomenclature (and nature) of each tran-
sition, e.g., the 765.147 line is from a bound-bound permitted (in aA�
quantum mechanical sense) transition, whereas the 1486.496 requires aA�
spin change and is a bound-bound spin forbidden transition (its upper level
is a long-lived metastable level). The lower three levels (i.e., those below 65
eV indicated [levels 1, 2, and 3]) can be considered as forming a simple
three-level atom. The Horizontal axis is sorted according to the angular
momentum quantum number (L). These data are extracted from the
HAOS-diaper software package (Judge & Meisner 1994).

in space. Unfortunately, the emissivities that form thet
erows of the kernel matrix are not ideal and have a Ðnite

amount of spread, dependent on the line formation param-
eters. We now discuss the form of this spread.

2.3. Physical Nature of the Kernels
To discuss the functional behavior of certain emission

lines we must consider the form of equation (5) as a function
of and For illustration purposes we consider a simplen

e
T
e
.

three-level atom with level 3 metastable,4 like that present-
ed in Figure 1 for N IV. Upon solving for non-LTE sta-
tistical equilibrium for our hypothetical atom we obtain the
population densities for levels 2 and 3 in terms of(n2) (n3)the population density of the ground level For the(n1).resonance line (transition from level 2 to the level 1, see, e.g.,
the 765.15 transitionÈsolid lineÈin Fig. 1) we have,A�
assuming the population of level 3 to be negligible,

n2\ n
e
n1 C12
A21

, (13)

4 While restricted, this picture illustrates all the important physical pro-
cesses that determine In practice, detailed multilevel calculations areK
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performed.

giving an emissivity of the form[Kres(ne
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An intersystem line (transition from level 3 to level 1 ; the
1486.50 transitionÈdot-dashed lineÈin Fig. 1), involvingA�
the population density of the metastable level 3,
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will have an emissivity behaving as[Kint(ne
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where ( j [ i) is the collisional exci-C
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~1@2

tation coefficient (units of s~1) with the statistical weight of
the upper level is the Maxwellian averaged colli-g

j
, !

ji
(T

e
)

sion strength and i is a numerical constant. The functional
behavior of all the emissivities we will consider can be cate-
gorized as belonging to one or the other of these two classes.
In this non-LTE plasma regime the electrons are assumed
to belong to a Maxwell-Boltzmann distribution and popu-
late the ground level preferentially. Such simpliÐcations
mean that is treated strictly a function of Indeed, atC

ij
T
e
.

this point we can categorically state the following :

1. The assumption of a Maxwellian electron distribution
ensures that, because of ionization equilibrium, K

l
(n

e
, T

e
)

will be approximately Gaussian in the domain or, moreT
eexactly, peaked around the temperature of maximum for-

mation of the ionic stage to which that transition belongs,
with a full width at half-maximum of 0.3 in (see, e.g.,t

eJordan & Wilson 1971). There are small departures from
this peak temperature arising from the contributions of the
other factors in equations (14) and (16).

2. All lines will emit irrespective of the electron density of
the plasma. Therefore, will cover the entireK

l
(n

e
, T

e
)

cm~3) domain of the upper solar atmosphere,n
e
(108È1012

but their functional behavior will depend critically on the
transition from which they arise.

For a resonance line in the simple three-level atom (see,
e.g., Fig. 1), with constant cm~3), inspection ofn

e
(n0\ 109

equation (14) will show that the functional dependence of
is determined by the interplay between the popu-Kres(Te

)
lation of the ground level (itself dependent on the abun-
dance of the ionization stage to which the transition
belongs) and the collisional excitation rate of the transition.
The approximation of a Maxwellian-Boltzmann electron
distribution will ensure that is a peaked function ofKres(Te

)
with its maximum at some temperature the value ofT

e
T0,where the ionic abundance is a maximum for this partic-T

e
,

ular This behavior is clear on inspection of the solid linen0.
in Figure 2, a plot of the emissivity of the N IV 765.15 A�
resonance line.

As can be appreciated from equation (16), the depen-T
edence of an intersystem lineÏs emissivity is not quite as

trivial. Equation (16) shows that the critical electron density
(where plays an important role. The valuen

ec
n
e
C23 B A31)

of is di†erent for each transition. If we have for a particu-n
ec
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FIG. 2.ÈEmissivities of a resonance line (solid line) and intersystem line
(dashed line) as functions of temperature only. These are for lines of N IV

(wavelengths 765.147, 1486.496 calculated for a electron density ofA� )
109 cm~3. These data are extracted from the HAOS-diaper software
package (Judge & Meisner 1994).

lar intersystem transition the case where the tem-n0 > n
ecperature dependence of will be determined solely byKint(Te

)
the numerator and will resemble and be a stronglyKres(Te

)
peaked function. However, another intersystem transition
may depend on a metastable level which has andn0 [ n

cethen both the denominator and numerator must be con-
sidered as important terms. (at this Ðxed densityKres(Te

)
can be approximated from the collision strengthsn0[ n

ce
)

and and the other ratio factors (indicated below(!31 !32)as [ . . . ]) present for the relevant transition in equation (16)
by

Kint(Te
)B

g3
g1

!31(Te
) exp ([E13/kB T

e
)

!31(Te
)] !32(Te

)
[ . . . ] , (17)

where is the transition energy and is BoltzmannÏsE13 kBcoefficient. The resulting function has a roughly Gaussian
shape, peaked at the temperature of maximum ionic abun-
dance, but skewed shortward of Again, this is clearlyT0.

observed in the dot-dashed line of Figure 2, where we show
the emissivity of the intersystem line N IV at 1486.50 A� .

The emissivities used in what follows belong to strong
transitions in the wavelength range 150È1610 for ions ofA�
various isoelectronic sequences from atoms including :
carbon (C IIÈC IV), iron (Fe XIIÈFe XV), magnesium
(Mg VIÈMg X), neon (Ne VIÈNe VIII), nitrogen (N IIÈN V),
oxygen (O IIÈO VI), and silicon (Si IIIÈSi XII). The precise
details of the isoelectronic transitions used are given in
Table 1, and there are 133 lines in total. In Figure 3 we plot
the singular value distribution for a kernel matrix com-
posed of these 133 lines which we will refer to, from now on,
as the ““ All-lines ÏÏ kernel. It has a condition number, deter-
mined by equation (11), of It is worthlog10 C

K
\ 5.9470.

pausing to reÑect on what this implies ; as per equation (10),
relative data error p dg p / p g p will be ampliÐed by a factor
^106 ! The only way to prevent the occurrence of unphys-
ical oscillations in f is then to impose strong regularization.
In doing so however, one loses the ability to recover
sharp physical structures in the source function Thism(t

e
).

FIG. 3.ÈSingular value distribution of the matrix constructed from(p
n
)

all N \ 133 line emissivities considered for the inverse problem with am(t
e
)

P\ 30 point discretization. The condition number is given by the ratio of
the largest to smallest singular value.

TABLE 1

TRANSITION CONFIGURATIONS OF THE (SYNTHETIC) EMISSION LINES USED TO PRODUCE THE

EMISSIVITIES FOR °° 2.6 AND 3

Isoelectronic
Sequence Transitions Ions

Lithium . . . . . . . . . . 2sÈ2p, 2sÈ3p C IV, N V, O VI, Ne VIII, Mg X, Si XII

Beryllium . . . . . . . . 2s2 SÈ2s2p 3P, 1P C III, N IV, O V, Ne VII, Mg IX, Si XI

2s2p P3, 1PÈ2p2 3P, 1D, 1S
Boron . . . . . . . . . . . . 2s22p PÈ2s2p2 4P, 2D C II, N III, O IV, Ne VI, Mg VIII, Si X

2s2p2 PÈ2p3 4S
Carbon . . . . . . . . . . 2s22p2 PÈ2s2p 3 5S, 3D O III, Mg VII, Si IX

2s22p2 PÈ2s2 2p2 1D, 1S
2s22p2 DÈ2s2p 3 1P, 1D

Nitrogen . . . . . . . . . 2p3 SÈ2p23s 4P O II, Mg VI

Sodium . . . . . . . . . . 3sÈ3p Si IV

Magnesium . . . . . . 3s2 SÈ3s3p 3P, 1P Si III

3s3p2 PÈ3p2 3P

NOTES.ÈTransition conÐgurations of the (synthetic) emission lines used to produce the
emissivities for °° 2.6 and 3 of this paper. Only lines in the range of the CDS and SUMER
instruments on SOHO were used (150È1610 Seven high electronic sequence lines from theA� ).
iron ions Fe XIIÈFe XV (not listed) are also used.



1120 MCINTOSH, CHARBONNEAU, & BROWN Vol. 529

loss of information is clearly something to be avoided as
much as possible (see, e.g., Kashyap & Drake 1998).

2.4. L ine Selection as a Combinatorial Optimization Problem
In view of the above considerations regarding the ill con-

ditioning of the DEM inverse problem, it would appear
advantageous to set up the inversion problem in a manner
that minimizes error ampliÐcation, i.e., that minimizes C

K
.

This can be achieved in principle by carrying out the inver-
sion using only a subset of lines with minimally overlapping
kernels, while maintaining a reasonable coverage in source
function space. How should one go about choosing an ade-
quate subset of lines that strikes a proper balance between
these two conÑicting requirements? Physical insight into
the atomic physics underlying the nature of the kernels can
help, but if a great many lines are available, such an
approach may not yield near-optimal results.

In essence, we are facing a combinatorial optimization
problem. Given a (large) set of N emission lines, we seek the
subset of M (\N) lines that minimizes the condition
number Recall that the number of possible com-C

K
.

binations of M distinct objects drawn from a larger set of N
objects is given by

(NM)\ N !
M !(N [ M) !

(18)

For our application, this will be a very large number. Con-
sider for example the task of Ðnding the best set of 30 lines
out the 133 used by the ““ HAOS-diaper ÏÏ software package
(Judge & Meisner 1994). There are approximately 1029 such
combinations, far too many for enumeration or Monte
Carlo search to even be an option. Moreover, precisely
because many lines have similar kernels, this combinatorial
problem can be expected to be strongly multimodal, in that
many di†erent sets of lines can lead to similar In otherC

K
.

words, the search space is not only immense, it also contains
a great many secondary minima. The optimization problem
we are contemplating is clearly a hard one.

Fortunately, we are not strictly required to Ðnd the abso-
lute best of all 1029 possible line combinations, but rather
one line combination that leads to a low enough ThisC

K
.

opens the possibility of using heuristic search techniques
that, while not necessarily Ðnding the absolute minimum in
search space, will produce a solution ““ good enough, fast
enough.ÏÏ We adopt such an approach here, based on the
class of evolutionary algorithms known as genetic algo-
rithms (GA; Holland 1962 ; Goldberg 1989 ; Mitchell 1996).

2.5. SEL ECT OR: A Genetic Algorithm-based
Combinatorial Optimizer

First deÐne a trial solution as a list of M distinct emission
lines. A GA searches for the best possible solution via the
following iterative steps :

1. [Initialization] Construct a population of trial solu-
tions, where each solution consists of a randomly selected
subset of M lines.

2. [Begin Iteration] For each population member, con-
struct the corresponding DEM kernel and calculate C

K
.

3. Rank the population according to condition number ;
low means high ““ Ðtness.ÏÏC

K4. Select and breed the subset of population members
with higher Ðtness.

5. Replace population by newly bred trial solutions.

6. If termination criterion not reached, then return to
step 2, else proceed.

7. [End Iteration] Return the trial solution with the
lowest in the current population as the set of UV/EUVC

Klines that minimizes the condition number of the kernel
matrix.

Breeding, which is what gives GA its name, is carried out
by encoding selected pairs of trial solutions as strings that
uniquely identify the set of M distinct lines associated with
each solution. Those strings are then subjected to bio-
logically inspired operations of crossover and mutation.
The details of these operations need not concern us here (see
Charbonneau 1995 for a gentle introduction). Let us simply
mention that the encoding scheme and operators must be
such that ““ o†spring ÏÏ solutions retain some of the features
(i.e., subset of lines) that gave their ““ parents ÏÏ a low enough

to be selected for breeding in the Ðrst place, whileC
Kproducing novel combinations of lines. This very triad,

Ðtness-based selection ] inheritance] variation, is in fact
at the very core of the biological evolutionary process. For
a Ðxed selection criterion (here, the lower the better),C

Kover sufficiently many algorithmic iteration a lowering of
the Ðttest population memberÏs is basically unavoidable.C

KOn the other hand, for a large, hard problem it is quite
likely that the GA will not Ðnd the absolute lowest possible

in a computationally reasonable number of generationalC
Kiterations. Recall, however, that this is not we are trying to

achieve ; we are only interested in Ðnding a line subset that
yields a low enough C

K
.

Our SELECTOR algorithm makes use of a modiÐed
version of the GA-based optimization subroutine PIKAIA,
described in Charbonneau & Knapp (1996 ; see also the
Appendix of Charbonneau 1995). The modiÐcations are
needed to ensure that the action of the crossover and muta-
tion operations on the strings deÐning parent solutions
leads to most parent lines being passed to the o†spring
solutions, without producing duplicate lines in either off-
spring. This can be achieved by a variation on the so-called
ordinal representation scheme (see, e.g., Michalewicz 1994,
° 10). Details of this modiÐed scheme will be presented else-
where (McIntosh & Charbonneau 2000).

Because the scheme is an iterative method working on a
population of trial solutions, in general a large number of
solutions will be evaluated in the course of the evolutionary
process. Each such evaluation involves (a) the construction
of the kernel matrix, deÐned by equation (9), and (b) the
calculation of its condition number. The second step can be
performed by singular value decomposition (SVD; see for
example Press et al. 1992, ° 2.6), but this is a relatively
demanding computational task. In what follow we make
use of a much faster technique due to Clive et al. (1979),
which we found provides a reasonably accurate estimate of
the condition number, provided that we have M \ P (i.e., a
square problem).

2.6. SEL ECT ORÏs Performance
In light of our previous discussion about the expected

mathematical and physical form of a well-conditioned
kernel matrix, let us Ðrst deÐne two quantities that will
prove useful for the foregoing analysis. In order to be able
to measure how well the temperature domain is being
covered by the selected emissivities that constitute the
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kernel matrix, we deÐne the normalized linear superposition
kernel asS(t

e
)

S(t
e
)\ ;

l/1

M
K

l
*(t

e
) , (19)

S(tü
e
)\ S(t

e
)

Max [S(t
e
)]

, (20)

where is the normalized emissivity of the line labeled lK
l
*(t

e
)

and M is the number of lines used in the calculation. The
second quantity we introduce is the fractional coverage of
any kernel matrix, f, as the integral of equation (20) over the
entire domain, i.e.,t

e

f\ 1
P
P
te
SŒ (t

e
)dt

e
(21)

where P is the number of points over which the temperature
domain is discretized (P\ 30 for the calculations reported
below).

In Figure 4 we use these quantities to illustrate the evolu-
tionary behavior of a single 2000 generation SELECTOR
run. Figure 4a shows the evolving shape of for gener-S(t

e
),

ations j\ M1, 250, 500, 1000, 2000N. Only the Ðttest individ-
ual of each of those generations is plotted. Note the
evolution to a state where the superposition of the emis-
sivities gradually span the domain with increased uni-t

e

FIG. 4.ÈVariation of the coverage and condition number in the course
of an evolutionary run. Panel (a) superimposes plots of at generationS(t

e
)

j\ M1, 250, 500, 1000, 2000N during a typical SELECTOR evolutionary
run. Panel (b) shows the fractional coverage f (dot-dashed line) of the best
solution in the population and its condition number (solid line) at every
generation. Better conditioned kernels have a more uniform coverage over
the entire domain.t

e

formity. This evidently leads to a gradual increase in
fractional coverage f and is accompanied by a decrease of
the condition number, as can be seen in Figure 4b (again
only the best individual at each generation is plotted). After
2000 generations has fallen to RecallC

K
log10 C

K
\ 4.9640.

that the condition number corresponding to the ““ All-lines ÏÏ
approach, on the other hand, is log10 C

K
\ 5.9470.

After a few hundred generations, the later evolutionary
phases are characterized by relatively long periods of stasis,
where often both f and remain constant, interrupted byC

Kshort-lived epochs of abrupt decrease in Such evolu-C
K
.

tionary ““ jumps ÏÏ are not a mere consequence of the discrete,
combinatorial nature of the problem; they are a generic
trademark of GA optimization. They occur when breeding
generates a novel, higher than average line combination
that spreads through the population in subsequent gener-
ational iterations.

It is quite striking that the net fractional coverage only
increases slightly, from about 50% to 65% in the course of
the complete run. This is hardly better than the ““ All-lines ÏÏ
coverage of f \ 0.614. However, the condition number falls
by over 4 orders of magnitude. This indicates that while
many di†erent line combinations can add up to essentially
the same coverage, some of them are clearly superior to
others in term of Homogeneous coverage, in itself, is notC

K
.

a reliable measure of conditioning and does not guarantee a
numerically stable inversion.

Figure 5 shows the distribution of condition numbers
(Fig. 5a, thicker line) and fractional coverage (Fig. 5b)
resulting from running SELECTOR 300 times (5000 gener-
ation runs). The distribution is quite narrow, indicating that
SELECTOR reliably Ðnds solutions with condition
numbers a factor of 10 smaller than for the ““ All-C

K
D 105,

lines ÏÏ approach (which leads to andlog10 C
K

\ 5.9470),
signiÐcantly better fractional coverage. Examination of the
evolutionary runs also reveals that by 2000 generations the
condition number is already within a factor of 2 of its Ðnal
value attained after 5000 generations.

How much of this is a mere results of having reduced the
number of lines from 133 to 30? This can be answered by
repeatedly selecting randomly 30 lines from the 133 avail-
able, and computing and f. The results of this purelyC

Krandom approach are disastrous : an average C
K

D 1010
and fractional coverage f D 0.456. Proper line selection is
clearly not a trivial business.

A computationally fairer Monte Carlo approach would
be to produce as many random sets of 30 lines as are evalu-
ated in the course of a SELECTOR run (here 5] 105 ;
population size 100 times 5000 generations), and retain the
single best line combination so produced. The thin lines on
Figure 5 shows the distribution of and f resulting fromC

Kthis new Monte Carlo procedure. The average is stillC
Knearly 3 orders of magnitude larger than that found by

SELECTOR for the same amount of computation, and
fractional coverage is signiÐcantly poorer. The mean of the
Monte Carlo distribution is (withlog10 C

K
\ 7.8094

extrema 7.2701 and 12.195), much higher than that of the
““ All-lines ÏÏ while the mean of the SELECTOR distribu-C

K
,

tion is (with extrema of 4.8034 andlog10 C
K

\ 4.9086
5.1269), an order of magnitude lower than the ““ All-lines ÏÏ
C

K
.
As alluded to earlier the condition number of the matrix

arising from the discretization of equation (8) represents a
trade-o† between the degree of linear dependence in the
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FIG. 5.ÈDistributions from the 300 run ensembles of SELECTOR
(thick solid line) and iterated Monte Carlo search algorithm (thin solid line).
The quantities listed along the top edge of each panel are distribution
mean condition numbers (also indicated by the vertical tick marks) and
variances (in parenthesis) for each distribution. Note the position of the
““ All-lines ÏÏ relative to the two distributions.C

K

rows and how well the functional domain (here t
e
\

is covered. The fact that nearly all combinations oflog10 T
e
)

30 lines lead to a signiÐcantly higher than if 133 lines areC
Kused indicates that coverage is here an important determi-

nant of since one would expect that the ““ All-lines ÏÏC
K
,

kernel should be characterized by a larger number of nearly
linearly dependent rows (cf. lines of the same ion will peak
at roughly the same temperature). In Figure 6 we show this
coverage e†ect by plotting for the lines belonging to theS(t

e
)

runs of SELECTOR (solid line) and Monte Carlo (dashed
line) against that of the ““ All-lines ÏÏ kernel (dot-dashed line).

In Figure 7 we show a line selection histogram con-
structed on the basis of multiple, independent SELECTOR
runs. It is clear that some lines are chosen signiÐcantly more
often than others. The Ðgure, however, gives no clear indica-
tion that any of these lines occur together in the sets chosen,
or in separate subsets, to form a kernel of signiÐcantly lower
condition number. In fact, the condition number of the
kernel matrix formed by the 30 lines selected most often is
quite high, namely This highlights thelog10 C

K
\ 7.3585.

multimodal nature of the combinatorial optimization
problem presented by line selection (cf. discussion in ° 2.5).

The data from Figure 7 are collated in Table 2. There we
provide the details of all the lines appearing in Figure 7 that
have selection frequencies above the mean (67.7). Also given
are the temperatures at which peaks. Lines(t

e
max) K

l
(t
e
)

FIG. 6.ÈNormalized linear superposition kernel for the ““ All-S(t
e
)

lines ÏÏ kernel (dot-dashed line), the optimal SELECTOR kernel (solid line),
and iterated Monte Carlo search algorithm (dotted line). The horizontal
lines represent the value of fractional coverage ( f ) for each of the above.

belonging to the set with the smallest are indicated byC
Kan asterisk (*). In Table 3 we give the details of the line the

optimal set of 30 lines.
In conclusion, we can state that selecting only a subset of

available emission lines can lead to a better conditioned
discretized system only if the selection is carried out in such
a way as to explicitly minimize the condition number.5 In
the next section we explore the consequences of this form of

5 In practice, a true preconditioning step to the observation of UV/EUV
lines would encompass the mathematics minimization), atomic physics(C

Kcoverage of the kernels) and the observational limitations (instrumental(t
ecapabilities, calibration, etc.) of individual lines as one. However, in this

section we assume that the UV/EUV lines are all observable and then use
SELECTOR to extract those to be retained for the numerical inversion.

FIG. 7.ÈHistogram of line selection frequency for 300 runs of SELEC-
TOR. The lower axis identiÐes the atom (large division) and ionization
stage (corresponding to the small division label) to which each line belongs.
Notice the existence of a subset of the 133 lines that have selection fre-
quencies signiÐcantly greater than the mean of 67.7. However, these do not
form the optimal subset of 30 lines ; using the 30 most frequently selected
lines yields much larger than for the ““ All-lines ÏÏ kernel.log10 C

K
\ 7.3586,
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TABLE 2

DETAILS OF THE EMISSION LINES SELECTED MOST AT THE END OF THE 300 5000 GENERATION

RUNS OF SELECTOR

j j
Ion (A� ) Count t

e
max Ion (A� ) Count t

e
max

C II . . . . . . . . . . 1335.66 300 4.568* C III . . . . . . . . . 1175.59 109 4.844*
C III . . . . . . . . . 1175.98 71 4.844* C IV . . . . . . . . . 312.420 243 5.051*
Mg VII . . . . . . 431.188 143 5.741 Mg VIII . . . . . . 436.671 236 5.879*
Mg VIII . . . . . . 772.749 230 5.879* Mg IX . . . . . . . 443.972 72 5.948
Mg IX . . . . . . . 368.070 155 5.948* Mg IX . . . . . . . 706.060 72 5.948
Mg X . . . . . . . . 609.793 211 6.017* Ne VI . . . . . . . . 562.711 261 5.603*
Ne VI . . . . . . . . 999.630 299 5.534* Ne VI . . . . . . . . 1006.09 91 5.534
Ne VI . . . . . . . . 1010.60 136 5.603 Ne VII . . . . . . . 564.528 117 5.672*
Ne VII . . . . . . . 895.175 223 5.672* Si III . . . . . . . . . 1206.49 131 4.706*
Si III . . . . . . . . . 1298.94 144 4.706* Si III . . . . . . . . . 1301.14 150 4.706
Si III . . . . . . . . . 1303.32 84 4.706 N III . . . . . . . . . 771.900 107 4.913
N III . . . . . . . . . 772.385 129 4.913* N III . . . . . . . . . 991.502 267 4.913*
O II . . . . . . . . . . 539.085 180 4.637 O II . . . . . . . . . . 540.005 103 4.637
O III . . . . . . . . . 833.715 68 4.844* O III . . . . . . . . . 1660.80 150 4.844*
O III . . . . . . . . . 1666.14 79 4.844 O IV . . . . . . . . . 624.618 99 5.189
O IV . . . . . . . . . 625.852 122 5.189 O IV . . . . . . . . . 1397.23 154 5.120
O IV . . . . . . . . . 1399.78 102 5.189 O IV . . . . . . . . . 1404.80 137 5.189*
O IV . . . . . . . . . 1407.38 182 5.189* O V . . . . . . . . . . 761.128 248 5.327*
O V . . . . . . . . . . 760.227 114 5.327* O VI . . . . . . . . . 150.089 265 5.465*
Si X . . . . . . . . . . 356.050 209 6.086* Si XI . . . . . . . . . 303.582 135 6.155
Si XII . . . . . . . . 499.405 300 6.224* Fe XII . . . . . . . 1242.00 204 6.086*
Fe XIII . . . . . . . 1216.46 249 6.224* Fe XIV . . . . . . . 334.172 207 6.263*
Fe XIV . . . . . . . 447.329 78 6.263 Fe XV . . . . . . . 281.342 150 6.293*
Fe XV . . . . . . . 300.351 93 6.293 Fe XV . . . . . . . 419.552 286 6.293*

NOTES.ÈThe emission lines included here are those with selection frequencies greater than the mean
of 67.7 counts. The lines indicated by an asterisk (*) are those belonging the set having the minimum
value of Also given are the ions to which the line belongs, wavelengths j thelog10 C

K
\ 4.8034. (A� ),

number of times the line was selected and the temperature at with the emissivity of the(t
e
\ log10 T

e
)

line peaks, t
e
max.

preconditioning for the stability of the numerical solutions
obtained by regularized inversion with synthetic data. In ° 4
we will perform the same condition number optimization
for a set of 40 lines observed by the Skylab Harvard S-055
Spectroheliometer (Reeves, Huber, & Timothy 1977) to
validate this preconditioning step and show that it can

improve the numerical stability of inversions using ““ real ÏÏ
data.

3. RESULTS ON SYNTHETIC LINE INTENSITIES

The majority of publications presenting derivations of
DEM distributions [or with fromm(T

e
) m(t

e
), t

e
\ log10 T

e
]

TABLE 3

DETAILS OF THE OPTIMAL SUBSET OF EMISSION LINES ONLY

j j
Ion (A� ) Count t

e
max Ion (A� ) Count t

e
max

C II . . . . . . . . . . 1335.66 300 4.568 C III . . . . . . . . . 1175.98 71 4.844
C IV . . . . . . . . . 312.420 243 5.051 Mg VIII . . . . . . 436.671 236 5.879
Mg VIII . . . . . . 772.749 230 5.879 Mg IX . . . . . . . 368.070 155 5.948
Mg X . . . . . . . . 609.793 211 6.017 Ne VI . . . . . . . . 562.711 261 5.603
Ne VI . . . . . . . . 999.630 299 5.534 Ne VII . . . . . . . 564.528 117 5.672
Ne VII . . . . . . . 895.175 223 5.672 Si III . . . . . . . . . 1206.49 131 4.706
Si III . . . . . . . . . 1298.94 144 4.706 N III . . . . . . . . . 772.385 129 4.913
N III . . . . . . . . . 991.502 267 4.913 O III . . . . . . . . . 833.715 68 4.844
O III . . . . . . . . . 1660.80 150 4.844 O IV . . . . . . . . . 625.127 51 5.120
O IV . . . . . . . . . 1404.80 137 5.189 O IV . . . . . . . . . 1407.38 182 5.189
O V . . . . . . . . . . 760.227 114 5.327 O V . . . . . . . . . . 761.128 248 5.327
O VI . . . . . . . . . 150.089 265 5.465 Si X . . . . . . . . . . 356.050 209 6.086
Si XII . . . . . . . . 499.405 300 6.224 Fe XII . . . . . . . 1242.00 204 6.086
Fe XIII . . . . . . . 1216.46 249 6.224 Fe XIV . . . . . . . 334.172 207 6.224
Fe XV . . . . . . . 281.342 150 6.293 Fe XV . . . . . . . 419.552 286 6.293

NOTES.ÈThese are the lines belonging to the SELECTOR run that form a kernel matrix with
Given are the ions to which the line belongs, wavelengths j the number oflog10 C

K
\ 4.8034. (A� ),

times the particular line was selected and the temperature at with the emissivity of the(t
e
\ log10 T

e
)

line peaks, t
e
max.
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FIG. 8.ÈRegularized inversion (for smoothing parameters, ", varying from 100 to 106) of line intensities calculated for a model function (dashed line).m(t
e
)

The SELECTOR function recovered (solid line) is clearly more numerically stable than that for the ““ All-lines ÏÏ (dot-dashed line) approach in the presencem(t
e
)

of errors in the line intensities. The line intensities used in these inversions have normally uniformly errors of relative magnitude ^15%. It is clear that
physical (positive deÐnite) solutions exist for smaller values of " for the SELECTOR inversions, in this case " has to be 106 in the ““ All-lines ÏÏ inversionm(t

e
)

before we recover a physical solution compared to 102 for the SELECTOR case.

observed UV/EUV line intensities from the Sun or other
stars adopt what we have called here the ““ All-lines ÏÏ
approach (see, e.g., Kashyap & Drake 1998 ; Lanzafame et
al. 2000). This method involves making a physically subjec-
tive line choice from every emission line observed to con-
struct the kernel matrix (K) for the inverse problem and
hence perform the numerical inversion and obtain (asm(t

e
)

stated in footnote 3). In most of these works the e†ect of
error propagation from data to solution associated with the
poor conditioning of the discretized integral operator has
seldom been given proper consideration (in our opinion).
Consequently, we use the selection algorithm described in
the previous section as a preconditioning step to the inver-
sion calculation proper. As will become apparent below,
choosing a subset of available emission lines on a more
mathematical basis leads to an inversion that exhibits much
better numerical stability than in the ““ All-line ÏÏ case while
also satisfying the physical criteria imposed. We must stress

that the analysis of this section is on a ““ proof of concept ÏÏ
basis and ignores the distinct possibility that some of the
133 lines used maybe very weak in the solar UV/EUV spec-
trum (possibly blended or unobservable ; C. Jordan 1999,
private communication). We will consider the case of true
observed lines in the following section.

With the results of the preceding section at hand, we
perform inversions for both the optimal subset of 30
SUMER/CDS lines (speciÐcally, those obtained by the
SELECTOR run with the lowest Ðnal value of as wellC

K
),

as the full set of 133 emission lines (taken from Judge et al.
1997), in order to compare the stability of the correspond-
ing solutions. These inversions make use of P\ 30 dis-
cretization points uniformly distributed in and aret

eperformed using a regularization ““ forward-backward ÏÏ
method. This method involves computation of line inten-
sities (with uniformly distributed errors in the range ^15%)
for a given model function. The model we have used ism(t

e
)
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FIG. 9.ÈInversions from Fig. 8d for the model function (dashedm(t
e
)

line) with "\ 106. Now included are the formal error bars for each solu-
tion, the SELECTOR function (solid line) and the ““ All-lines ÏÏ casem(t

e
)

(dot-dashed line). These error bars decrease with decreasing ", but this is
accompanied by a decreased stability of the numerical solution (see Fig. 8).
The SELECTOR-preconditioned solution is not only more stable with
respect to variations in ", it also yields signiÐcantly smaller formal error
bars at a given value of ". To bring the error bars on the ““ All-lines ÏÏ
solution down to comparable magnitude requires " to be reduced by 4
orders of magnitude ; however, the solution is then very unstable numeri-
cally (see Fig. 8b).

the average quiet-Sun taken from Figure 3 ofm(t
e
)

RD1981b.6 It is then a simple case of employing a second-
order Tichonov regularization algorithm like that discussed
in ° 2 with a range of smoothing parameters " (100È106) to
obtain a solution.

In Figure 8 we present the inversions for the synthetic line
intensities [from our chosen model dashed line] for am(t

e
) ;

wide range of smoothing parameters (100È106) for the
optimal subset (solid line), as well as the ““ All-lines ÏÏ case
(dot-dashed line). From Figures 8aÈ8d it is clear that the
inversion performed with the optimal subset of lines has a
signiÐcantly greater degree of numerical stability for a given
value of ". We also note that to achieve a stable physical
(positive deÐnite) solution from the ““ All-lines ÏÏ case
requires that we use a large value of " ; such increases in "
will jeopardize the recovery of structure in the inferred m(t

e
)

because regularization will Ñatten indiscriminately numeri-
cal oscillations as well as physically meaningful sharp fea-
tures.

Using the optimal line set allows us to impose much
smaller values of " (4 orders of magnitude) to achieve a
stable (positive deÐnite) solution,7 which will also lead to
smaller error bars on the inferred solution. The error bars
returned by the inversion scheme are formal error estimates
that measure the residual discrepancies, in a least-squares

6 We have used the numbers from Fig. 3 of RD1981b and interpolated
a best Ðtting curve to the points. This curve is then our ““ model ÏÏ and ism(t

e
)

used to compute synthetic line intensities for the 133 lines by calculating
the result of eq. (8) for each. Such calculations are termed as ““ forward ÏÏ
calculations, using the right-hand side of eq. (8) to determine the left-hand
side. The model curve of RD1981b is then the target function of the
““ backward,ÏÏ or inverse, process.

7 The fact that we can obtain a physical solution by imposing signiÐ-
cantly less regularization is another bonus of the SELECTOR precondi-
tioning step.

sense, between the right- and left-hand sides of equation (7).
Weak regularization allows us to Ðt the data better (in a
formal sense), even though what is being Ðtted is to a large
degree data noise ; from a physical point of view, the
inferred solution is then not particularly accurate or even
meaningful. Increasing regularization decreases the quality
of the Ðt, leading to larger formal error bars.

This phenomenon is illustrated on Figure 9, which repli-
cates Figure 8d but now includes error estimates returned
by the inversion. Within its 1 p error bars, the ““ All-lines ÏÏ
solution is consistent with a Ñat for Them(t

e
) t

e
º 5.5.

SELECTOR-preconditioned solution, on the other hand,
provides a statistically signiÐcant measure of the maximum
at This demonstrates that an inversion using thet

e
B 6.2.

optimal line set is more likely to recover physical structure
in a statistically meaningful manner.

4. APPLICATION TO SKY L AB S-055 SPECTROHELIOMETER

DATA

The analysis of the previous section concentrated on
using the optimal line set obtained from the 300 run ensem-
ble of SELECTOR results to perform an inversion for some
synthetic line intensities. Here we perform a similar analysis
for the lines, identiÐed by Vernazza & Reeves (1978),
observed by the Harvard S-055 Spectroheliometer (Reeves
et al. 1977) on the Apollo Telescope Mount during the
1973È1974 Skylab mission. Once we have obtained this
optimal subset of lines, we perform a series of inversions to
infer the of the emitting solar plasma.m(t

e
)

We make use of the same atomic models described in ° 2
but we concentrate on the 40 strong lines identiÐed in the
composite (average) quiet-Sun spectra of Vernazza &
Reeves (1978 ; Figs. 2, 3, and 4) that occur in the instru-
mentÏs 280È1350 wavelength range. To o†set theA�
reduction in the number of lines used in this study we are
careful to include the emissivities from lines (particularly of
the same ionic multiplets) that form blends with those lines
identiÐed within the spectral resolution of the instrument
(1.6 FWHM), in addition to those blends noted in theA�
tables of Vernazza & Reeves (1978). We then Ðnd that some
87 emissivities combine linearly to form the 40 used in the
present analysis.

The reduction to an analysis of only 40 lines dramatically
reduces the dimensionality of the search problem, even
more so since we now proceed to select a further subset of
M \ 30 lines. There are now some 1011 possible com-
binations of line emissivities (calculated, in this case, for a
constant electron pressure P

e
\ n

e
T
e
\ P

o
\ 4 ] 1014

cm~3 K, taken from Table 1 of RD1981b) that could form
the ““ optimal ÏÏ set (cf. n B 1029 of ° 2.4). The assumption of
constant is not only to make comparison with the calcu-P

elations of RD1981b but to ensure that the calculations are
consistent with observations and currently accepted models
of the solar transition region (TR), which suggest that the
TR is a constant pressure interface between the chromo-
sphere and corona, see, e.g., chap. 6 of Mariska (1992).
Again, we Ðx the number of discretization points tot

eP\ 30, uniformly distributed in over the range 4.0 ¹t
et

e
¹ 6.5.
The N \ 40 ““ All-lines ÏÏ case now has log10 C

K
\ 7.6727.

On the other hand, the optimal line set obtained by
SELECTOR yields again an order oflog10 C

K
\ 6.6091,

magnitude smaller. We tabulate these results in Table 4 by
indicating the number of times that each line was selected,
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TABLE 4

DETAILS OF THE 40 STRONG EMISSION LINES IN THE WAVELENGTH RANGE OF THE HARVARD S-055
SPECTROHELIOMETER (280È1350 SELECTED AT THE END OF THE 300È3000 GENERATIONA� )

RUNS OF SELECTOR

j j
Ion (A� ) Count t

e
max Ion (A� ) Count t

e
max

C II . . . . . . . . . . 903.962 255 4.338* C II . . . . . . . . . . 1037.02 114 4.338*
C II . . . . . . . . . . 1335.66 264 4.338 C III . . . . . . . . . 977.017 231 4.775*
C III . . . . . . . . . 1175.71 198 4.775* Mg VIII . . . . . . 430.465 255 5.896*
Mg VIII . . . . . . 436.670 255 5.896* Mg IX . . . . . . . 368.070 267 5.982*
Mg X . . . . . . . . 609.793 234 6.068* Mg X . . . . . . . . 624.941 231 6.068
Ne VI . . . . . . . . 401.136 240 5.551* Ne VI . . . . . . . . 558.594 165 5.551
Ne VI . . . . . . . . 562.701 180 5.551* Ne VII . . . . . . . 465.219 192 5.724
Ne VIII . . . . . . 770.409 240 5.724 Ne VIII . . . . . . 780.324 237 5.724*
Si II . . . . . . . . . . 1264.74 264 4.258* Si III . . . . . . . . . 1206.50 243 4.689*
Si XII . . . . . . . . 499.406 261 6.241* Si XII . . . . . . . . 520.665 249 6.241*
N II . . . . . . . . . . 1085.53 276 4.517* N III . . . . . . . . . 685.817 261 4.948*
N III . . . . . . . . . 989.799 138 4.862* N III . . . . . . . . . 991.511 171 4.862
N V . . . . . . . . . . 1238.82 231 5.206* N V . . . . . . . . . . 1242.80 240 5.206*
O II . . . . . . . . . . 718.505 249 4.603* O II . . . . . . . . . . 833.330 219 4.603*
O II . . . . . . . . . . 834.465 207 4.603 O III . . . . . . . . . 525.797 243 4.948
O III . . . . . . . . . 599.598 204 4.948* O III . . . . . . . . . 702.332 240 4.862*
O IV . . . . . . . . . 553.329 231 5.206 O IV . . . . . . . . . 787.710 252 5.120*
O IV . . . . . . . . . 790.199 177 5.120 O V . . . . . . . . . . 629.730 66 5.379
O V . . . . . . . . . . 758.675 201 5.379* O VI . . . . . . . . . 1031.91 270 5.465*
Fe XV . . . . . . . 284.160 297 6.327* Fe XV . . . . . . . 417.258 252 6.327*

NOTES.ÈThe lines indicated by an asterisk (*) are those belonging to the set having the minimum
value of Also given are the ions to which the line belongs, wavelengths j thelog10 C

K
\ 6.6091. (A� ),

number of times the line was selected and the temperature at with the emissivity of the(t
e
\ log10 T

e
)

line peaks, t
e
max.

the temperature at which peaks and if theyK
l
(t
e
) (t

e
max)

belong to the optimal set (determined as above ; identiÐed
by an asterisk).

Before considering formal inversions of the S-055 line
intensities for the ““ All-lines ÏÏ and SELECTOR line sets it is
important to try and reproduce the quiet-Sun average m(t

e
)

function in Figure 1 of Raymond & Doyle (1981a). We do
this using their inversion technique but our line emissivities,
since we beneÐt from improved determinations, in the inter-
vening years, of many of the underlying atomic coefficients.
The Raymond & Doyle method of inferring the func-m(t

e
)

tion explicitly assumes that does not vary over regionsm(t
e
)

smaller than such that equation (8) becomes*t
e
\ 0.1

I
l
\ m(t

l
*)
P
te
K

l
(t
e
)dt

e
(22)

where is the peak emissivity temperature of the linet
l
*

labeled l. The function is then readily constructed bym(t
e
)

using the M lines, each giving a value given bym(t
l
*)

m(t
l
*)\ I

l
obs
CP

te
K

l
(t
e
)dt

e

D~1
. (23)

With the function of RD1981b duplicated, noting thatm(t
e
)

we have adjusted our elemental abundances (Grevesse &
Anders 1991) to those given in Table 1 of Raymond &
Doyle (1981a), we may proceed with a comparison between
our formal regularized inversions and their results.

In Figure 10 we present the inversions for the observed
line intensities of Vernazza & Reeves (1978). As for Figure 8
we have performed the inversion for a range of smoothing
parameters (101¹ "¹ 104 in this case) for the SELEC-
TOR optimal set (solid line) and the ““ All-lines ÏÏ set (dot-
dashed line). These are plotted, for comparison, against the

average quiet-Sun (RD1981b) (dashed line). We seem(t
e
)

from Figures 10aÈ10d that both the ““ All-lines ÏÏ and
SELECTOR set inversions recover the trend of the
RD1981b behavior for Also note thatm(t

e
) 5.0¹ t

e
¹ 6.5.

both inversions, for low ", reproduce the maximum at t
e
B

6.2, but given the discussion of the previous section and
probable error ampliÐcation present, can it be taken from
granted that this feature is physical, as opposed to an inver-
sion artifact ?

Figures 11a and 11b show two ““ All-lines ÏÏ inversions,
obtained with "\ 10 (a) and "\ 1 (b), with error bars (as
calculated in ° 3) now included. Figure 11c shows a
SELECTOR-preconditioned solution with "\ 10. Notice
how the error estimates in this case are much smaller than
the equivalent ““ All-lines ÏÏ solution of Figure 11a. To bring
the error bars of the ““ All-line ÏÏ solution down to compara-
ble levels requires a decrease of the regularization to "\ 1
(Fig. 11b), but the solution is then clearly numerically
unstable.

A very powerful way to carry out the solution of an ill-
conditioned matrix system is based on singular value
decomposition (SVD; see Press et al. 1992, ° 2.6) ; the tech-
nique consists in forming as many orthogonal (or near-
orthogonal) linear combinations of the kernel emissivities
as possible, given the original emissivity kernal matrix. If
the problem is indeed ill conditioned, there will be fewer
such linear combinations than original emissivities, which
will lead to very small singular values for some linear com-
binations. The heart of the SVD-based technique is to elimi-
nate these deleterious combinations by zeroing the
corresponding inverse singular values in the singular value
matrix (see Press et al. 1992, ibid.). The dash-dotted line on
Figure 11c is a solution obtained in this way, with an
inverse singular value threshold of 10~2 (meaning that 26 of
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FIG. 10.È Tichonov regularized inversion (for smoothing parameters, ", varying from 101 to 104) of the average quiet-Sun line intensities taken from
Vernazza & Reeves (1978) and identiÐed in Table 4. The SELECTOR function recovered (solid line) is more numerically stable than that for them(t

e
)

““ All-lines ÏÏ (dot-dashed line) approach in the presence of errors in the line intensities. Against these functions we plot the DEM curve published by Raymond
& Doyle (1981b) for the same data (dashed line ; labeled as RD1981b-QS). As for Fig. 8 we see that the SELECTOR solution is physical for a lower value of "
(only 1 order of magnitude in this case).

40 linear combinations are retained for the inversion). The
SVD solution is quite similar to the SELECTOR-
preconditioned regularized solution, indicating that both
methods succeed about equally well in mitigating the ill-
conditioned nature of the Kernel emissivity matrix.

Both "\ 10 solutions on Figure 11 show a statistically
signiÐcant peak at At lower temperatures, speciÐ-t

e
^ 6.

cally around the preconditioned solution shows at
e
¹ 4.5,

downturn relative to the RD1981b curve. However, the m(t
e
)

inferred by these authors is determined by a single C II line
at 1335 (see Table 2 of Raymond & Doyle 1981a) and soA�
may not be properly constrained by the data. Examination
of Table 4 will reveal that our inversion includes informa-
tion from four lines in the ““ All-lines ÏÏ set, and three in the
optimal set. However, we note also that the optimal inver-
sion does not determine the intensity of the Si II 1265 lineA�
either which suggests that must rise by a factor ofm(t

e
)

around 4 in that region. The erroneously low intensities for
these two (relatively strong) lines indicates that the obser-

vational errors may have been underestimated and were
thus not given enough weight in the inversion.

In Table 5 we list the observed intensities of Vernazza &
Reeves (1978) along with a forward calculation using the
RD1981b and the form of we infer using the ““ All-m(t

e
) m(t

e
)

lines ÏÏ second-order regularization ("\ 103 ; i.e., from
Figure 10c where the solution is positive-deÐnite). It is clear
that there is reasonable correspondence between the
inferred intensities from the two methods and the observed
intensities, except for some of the ionic lines formed at t

e
¹

4.4.
A detailed investigation of the discrepancy in thelow-t

efunctions is beyond the scope of this paper, although am(t
e
)

reevaluation of the observational errors may be enough to
produce a result better Ðtted to the data at low Wet

e
.

simply point out that the few lines available in this ranget
eimply that regularization will strongly inÑuence, perhaps

even dominate, the behavior of the solution. The choice of
regularization technique, in this case, then becomes critical.
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FIG. 11.ÈTichonov regularized inversions for the quiet-Sun average
spectrum of Vernazza & Reeves (1978) with a comparable magnitude in
their error bars. Shown are the inversions for the ““ All-line ÏÏ case with
"\ 10 (a) and "\ 1 (b), and for the SELECTOR optimal line set (b), also
with "\ 10.0. The DEM curve published by Raymond & Doyle (1981b)
for the same data is plotted as a dashed line on all panels. Comparing (a)
and (c), Notice again the smaller error bars associated with the SELEC-
TOR preconditioned solution, for a Ðxed value of ". Reducing the ““ All-
lines ÏÏ error bars to comparable magnitude requires a decrease of " to the
level where the solution is numerically unstable (b). Again, the positivity
issues in these solutions are clear (cf. Fig. 8).

It would certainly be useful to use a nondi†erential smooth-
ing regularization, such as is provided by a maximum
entropy formulation (see, e.g., Press et al. 1992, ° 18.7).

5. DISCUSSION

In this paper we have aimed at improving the accuracy
and reliability of DEM analysis of emission lines. We have
described a form of preconditioning step to the DEM inver-
sion proper, which consists in selecting a subset of spectral
lines to be used for the inversion, rather than using all the
physically suitable lines available in the data set under
investigation. Working on the sets of UV/EUV lines avail-
able in the SOHO SUMER/CDS and Harvard S-055 EUV
Spectroheliometer data sets, we have achieved reduction by
a factor of 10 in the condition number of the discretized
integral operator. The associated improvement in numeri-
cal stability allows us to compute inversions with signiÐ-
cantly smaller regularization. This, in turn, leads to DEM
determinations that are formally more accurate, and more
physically meaningful.

There is another, purely practical advantage to carrying
out this kind of preconditioning. The number of emission

lines used to perform the DEM inversion can be reduced,
sometimes drastically (cf., going from 133 to 30 lines in the
case of SOHO SUMER/CDS data). The size of the corre-
sponding inverse problem is reduced proportionally, which
can translate to large reduction in needed CPU time
(inversion is typically a N3 operation, for a square problem,
where N is the size of the matrix representation of the inte-
gral operator). The speedup incurred by making use of the
preconditioning step advocated in this paper can obviously
facilitate the analysis, in a reasonable amount of CPU time,
of very large spectral data set (e.g., sequences of high spatial
resolution spectra obtained at a high time cadence), without
compromising the accuracy of the numerical inversions.

In a forthcoming paper (McIntosh & Charbonneau 2000)
we will expand on the present analysis by considering
simple extensions. Given the Ñexibility of our genetic
algorithm-based combinatorial optimization scheme, it is a
simple matter to let the number of emission lines considered
in the calculation be itself a quantity being varied toward
optimization. Likewise, the use of singular value decompo-
sition to compute the condition number, although more
computationally demanding than the approximate tech-
nique of Clive et al. (1979), would allow one to consider
situations where the number of discretization point P is
either larger or smaller than the number of emission lines
being used for the analysis. Another matter to be address
there is the incorporation of an ““ observability factor ÏÏ for
each line into SELECTOR. This will address the practi-
cality of making the actual observation, i.e., a precondition-
ing step for making UV/EUV observations of particular
lines with regard to performing reliable functions,DEM(T

e
)

and not on lines already observed (as we have done here),
and is hence omitted from this paper.

The possibility to easily incorporate observational
and/or physical constraints to the line selection process is a
notable advantage of our approach, which does not readily
carry over to classical approaches to condition number
mitigation, such as inversions based on singular value
decomposition. In fact our SELECTOR technique rep-
resents a form of ““ zeroth-order ÏÏ SVD, in which emissivities
are either retained or tossed away. The price to pay is that
we are throwing away information that could be put to
good use by SVD; the advantage lies with Ñexibility in
incorporating constraints in the line selection process. The
results reported in this paper indicate that our advocated
preconditioning step, though in principle inferior to formal
SVD in its use of whatever information is present in the
data, still leads to numerical inversions that are similar to
those obtained via SVD, in that both are numerically much
better behaved than a direct inversion of the ““ All-lines ÏÏ
Kernel.

On the physical front, it will be interesting to examine
whether our preconditioning scheme can improve the noto-
riously difficult inversion for the di†erential emission
measure in (see Almleaky, Brown, & Sweet 1989). Then

eextremely poor conditioning of the inverseDEM(n
e
)

problem is caused by the functional behavior of the line
emissivities as a function of see, e.g., Dere & Masonn

e
;

1981 ; Mason & Monsignori-Fossi 1994). Likewise, it will be
interesting to apply a preconditioning step to improve the
stability and accuracy of the bivariate DEM inverse
problem discussed in Judge et al. 1997 (see eq. [3]).

To sum up, we have shown, in the context of the
inverse problem, that judicious selection of aDEM(T

e
)
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TABLE 5

INTENSITIES OF THE 40 STRONG EMISSION LINES FOR THE QUIET-SUN AVERAGE SPECTRUM TAKEN FROM VERNAZZA &
REEVES 1978 (Iobs)

j j
Ion (A� ) Iobs IRD IMCB Ion (A� ) Iobs IRD IMCB

C II . . . . . . . . . . 903.962 32.89 213.93 55.31 C II . . . . . . . . . . 1037.02 204.30 259.70 290.58
C II . . . . . . . . . . 1335.66 1205.02 1129.09 252.10 C III . . . . . . . . . 977.017 963.06 2020.92 773.00
C III . . . . . . . . . 1175.71 314.80 714.48 282.79 Mg VIII . . . . . . 430.465 38.22 10.66 28.05
Mg VIII . . . . . . 436.670 42.70 15.09 39.33 Mg IX . . . . . . . 368.070 655.00 72.62 160.06
Mg X . . . . . . . . 609.793 125.05 53.75 83.23 Mg X . . . . . . . . 624.941 51.43 26.61 41.25
Ne VI . . . . . . . . 401.136 89.00 13.85 35.01 Ne VI . . . . . . . . 558.594 18.95 4.19 10.60
Ne VI . . . . . . . . 562.701 18.31 7.51 18.76 Ne VII . . . . . . . 465.219 120.32 20.86 60.62
Ne VIII . . . . . . 770.409 53.75 24.77 56.73 Ne VIII . . . . . . 780.324 25.93 12.39 28.44
Si II . . . . . . . . . . 1264.74 148.85 27.05 5.10 Si III . . . . . . . . . 1206.50 694.59 804.35 238.01
Si XII . . . . . . . . 499.406 51.35 70.18 78.66 Si XII . . . . . . . . 520.665 25.44 33.81 37.90
N II . . . . . . . . . . 1085.53 72.74 98.89 26.03 N III . . . . . . . . . 685.817 23.71 75.47 34.89
N III . . . . . . . . . 989.799 34.73 51.69 22.12 N III . . . . . . . . . 991.511 47.22 103.75 44.46
N V . . . . . . . . . . 1238.82 61.37 27.13 58.98 N V . . . . . . . . . . 1242.80 36.46 15.65 32.32
O II . . . . . . . . . . 718.505 14.56 17.91 5.32 O II . . . . . . . . . . 833.330 73.23 155.14 61.31
O II . . . . . . . . . . 834.465 23.24 255.04 101.89 O III . . . . . . . . . 525.797 31.20 15.56 7.90
O III . . . . . . . . . 599.598 56.59 43.70 21.38 O III . . . . . . . . . 702.332 75.29 63.18 29.34
O IV . . . . . . . . . 553.329 44.39 16.52 27.11 O IV . . . . . . . . . 787.710 83.15 52.98 73.57
O IV . . . . . . . . . 790.199 159.45 105.19 145.21 O V . . . . . . . . . . 629.730 334.97 161.25 374.23
O V . . . . . . . . . . 758.675 7.68 3.13 7.31 O VI . . . . . . . . . 1031.91 305.28 155.71 294.00
Fe XVa . . . . . . 284.160 0.00 . . . . . . Fe XV . . . . . . . 417.258 33.73 17.56 18.92

NOTES.ÈIntensities of the 40 strong emission lines for the quiet-Sun average spectrum taken from Vernazza & Reeves 1978
Also given are the intensities calculated (via eq. [8]) for the Raymond & Doyle 1981b and second-order regularization(Iobs). (IRD)for "\ 103) functions.(IMCB ; m(t

e
)

a The line of Fe XV at 284.160 is omitted from the inversions since it has zero intensity in Vernazza & Reeves 1978.A�

subset of emission lines leads to inversions of the source
function that exhibit better accuracy and numerical stability
than if all available lines are used. At Ðrst glance this is a
very counterintuitive result ; how can one obtain a superior
solution by making use of less information? The answer, of
course, is that the information being discarded is in fact
redundant, and moreover dangerously so from a numerical
point of view.
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